Divide-and-Conquer

Kuan-Yu Chen (it % %)

2019/03/19 @ TR-310-1, NTUST

Review

« There are three methods for obtaining asymptotic “0” or “0”
bounds on the solution
— Substitution method

1. Guess the form of the solution

2. Use mathematical induction to find the constants and show that
the solution works

— Recursion-tree method
 Each node represents the cost of a single subproblem

« Sum all of the costs to determine the total cost of the recursion

— Master method
« The master method provides a “cookbook” method for solving
recurrences of the form T(n) = aT (g) + f(n)

Maximum-subarray Problem.

« The stock price of STOCK is rather volatile

— You are allowed to buy one unit of stock only one time and then

sell it at a later date

To compensate for this restriction, you are allowed to learn

what the price of the stock will be in the future

120
110
100
90
80
70
60

« The price of the stock over a 17-day period

7\

/[

T~

\/

/" N~

vV

/ \/

0 1 2

3

— Your goal is to maximize your profit

possible price

« Buy at the lowest possible price and later on sell at the highest

Maximum-subarray Problem..

120

100 / \ /T ~ T~

% N/ N\) N~ —
% v N/ \/

- N/

60 - | | | T T T \|/ | T T T T | | T T

o A brute-force solution

— Just try every possible pair of buy and sell dates in which the
buy date precedes the sell date

n
2

2_
— Since (g) == > =, the approach would take Q(n?) time

— A period of n days has () such pairs of dates

Maximum-subarray Problem...

120

110 /

100 ~

00 \v/ N\, /~ N\~

0 N\ / \

70 \\//

60 [[I I [[| [I [[[I I [[
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Price 100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97

Change 13 -3 -25 20 -3 —16 —23 18 20 -7 12 -5 22 15 —4 17

« A transformation approach

— Let us instead consider the daily change in price

— If we treat this row as an array A, we now want to find the
nonempty, contiguous subarray of A whose values have the
largest sum

|

2

4 S5 6 7 8 9 10 11 12 13 14 15

16

13

-3

25

20 —16 18 120 | 7|12 (-5 |-22(15|-4

7

Maximum-subarray Problem....

— We call this contiguous subarray the maximum subarray

| 2 3 -+ 5 6 7 8 9 10 II 12 13 14 15 16
13 |3 (-25(20 -3 (-16(-2318 (20 |7 |12 |-5(-22(15|-4 |7
~—

maximum subarray

— The maximum subarray of A is A[8--- 11], with the sum 43

- You would want to buy the stock just before day 8 (that is, after
day 7) and sell it after day 11

— This transformation does not help

« We still need to check (

. It takes ©(n?) time

n—1

2

) subarrays for a period of n days

Maximum-subarray Problem.....

« A solution using divide-and-conquer

— Suppose we want to find a maximum subarray of the subarray
Allow --- high]|

— Divide-and-conquer suggests that we divide the subarray into
two subarrays A[low --- mid] and A[mid + 1:-- high]

— Any contiguous subarray Ali -+ j]of A[low --- high] must lie in
exactly one of the following places

- Entirely in the subarray A[low --- mid], so that low <i <j <
mid
« Entirely in the subarray A[mid + 1:-- high], so that mid < i <
J < high
« Crossing the midpoint so that low < i < mid <j < high
crosses the midpoint

/”—_’/R
low mid high

entirely in A[low .. mid] entirely in A[mid + 1. . high]

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

|

o N W

\O

11
12
13
14
15

Maximum-subarray Problem......

— We can easily find a maximum subarray crossing the midpoint
in time linear in the size of the subarray A[low --- high]|

left-sum = —o0
sum = ()
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum
max-left = 1
right-sum = —oQ
sum = ()
for j = mid + 1 to high
sum = sum + A[]]
if sum > right-sum

right-sum = sum

max-right = |

return (max-left, max-right, left-sum + right-sum)

Almid 4+ 1..j]
low i mid ———— high
Ali .. mid]
8

Maximum-subarray Problem.......

— To put everything together!
e(1), ifn=1

2T (g) +0Mm),ifn>1

FIND-MAXIMUM-SUBARRAY (A, low, high)

1 if high == low
2 return (low, high, A[low]) // base case: only one element
3 else mid = |(low + high)/2|
4 (left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)

T(n) =

5 (right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
6 (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

7 if left-sum > right-sum and left-sum > cross-sum

8 return (left-low, left-high, left-sum)

9 elseif right-sum > left-sum and right-sum > cross-sum
10 return (right-low, right-high, right-sum)
11 else return (cross-low, cross-high, cross-sun)

Maximum-subarray Problem........

. The brute-force solution takes Q(n?) time
. A transformation approach takes ©(n?) time

« The divide-and-conquer method takes @(nlog, n) time

— Faster than the brute-force method

10

Matrix Multiplication.

If you have seen matrices before, then you probably know
how to multiply them

- A = ayj

- B = b;;

— A and B are n X n matrices

- C = AB, ¢jj = Yk=1 Qicby;j

— The SQUARE-MATRIX- SQUARE-MATRIX-MULTIPLY (A, B)
MULTIPLY procedure takes {1 , — A rows
0(n?) time 2 let C be anew n X n matrix

3 fori =1ton
4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 Cij = Cjj —I—a,-k-bkj
8 return C

Matrix Multiplication..

- A simple divide-and-conquer algorithm

— Suppose that we partition each of 4, B, and C into four% X g
matrices

4= (A11 A12) B— (311 B12) C = <C11 C12)
Ay A/ By1 Byy) Cy1 Cyo

(C11 C12) _ <A11 A12) <B11 B12)
C1 Cyo Ay Ay /\By; By
Ci1 = A11B11 + 41,85

Cip = A11B1, + 41,85,

Cy1 = Ap1B11 + A28
Cyp = Ay1B1, + A23B5,

Each of these four equations specifies two multiplications of g X g

matrices and the addition of theirg X g products

12

Matrix Multiplication...

— We can create a straightforward, recursive, divide-and-conquer
algorithm

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==

4 c11 = d11 - b

5 else partition A, B, and C

6 Ci1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A1, B11)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3, B>1)

7 Ci» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B12)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A3, B>>)

8 C>1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A»;, B>1)

9 (5> = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B1»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, B>5)

10 return C

Matrix Multiplication....

sum up

The total time for the recursive case, therefore, is the sum of the
partitioning time, the time for all the recursive calls, and the time
to add the matrices resulting from the recursive calls

T(n) = O(1) + 8T (g) +0(n?)

By the master method, it is easy to infer that T(n) = 0(n>)

This simple divide-and-conquer approach is no faster than the
strai ghthI' war d SQUARE'MATRIX'MULTIPLY proce dur €

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn-==

4 ciy = an -bu

5 else partition 4, B, and C

6 Ci1 = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, By;)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Bs1)

7 Ci» = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, By»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A2, Bys)

8 C5; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (4,5, By;)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, By1)

9 C5, = SQUARE-MATRIX-MULTIPLY-RECURSIVE(4,;, By»)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5, Byy)

10 return C 14

Matrix Multiplication.....

« Strassen’s Method

— The Strassen’s method has four steps

1.

Divide the input matrices A and B and output matrix C into g X

n .
> submatrices

Create 10 matrics S¢, S5, :*+, S19, each of which is g X g

Compute seven matrix products Py, P,, -+, P, each of which is
n n
272

Compute the desired submatrices Cy4, C15, C21, Cy3

15

Matrix Multiplication......

— Instep 1
A A B B C C
.A:(n 12),32(11 12),(::(11 12)
Ay Ay By1 By Cy1 Cy
e O(1)
— In step 2

« Since we must add or subtract g X g matrices 10 times, this step
does indeed take ©(n?) time

© 51 = B1y = By, 5, = A11 + Aqp

S3 = A1 + Az, 54 = By1 — Byg

S5 = A11 + A3, 5¢ = B11 + By

© 57 =A1p — Ay, Sg = By + By

* S9 = A11 — A1, 510 = B11 + By

16

Matrix Multiplication.......

— In step 3

« Recursively multiplyg X g matrices 7 times

Aqr - S
S> - Bas
83+ B
Az - 54
S5+ Se
S7-Ss
59 - S10

+ Bip — Apy
+Byy + Ay -
By + Az -
+ Byy — Ay -
- By + A
- By + Arz
- Bi1 + Aqy

+ B

+ Byy + Asz - By + Azy - By,
- Bop — Ao - Byy — Az - Bas
- B1y — A1 - Biy — Az - Bys

17

Matrix Multiplication........

€11 = A11B11 + A28
Ci2 = A11B12 + A28y
Cy1 = Az1B11 + Ax3Byy
Cy2 = Ap1B1o + Axp By

— In step 4
« To construct the fourg X g submatrices of C
e O(n?)
e (44 =Ps+P,—P, +Pg
A1 Bir+ Ay - By + Axa- Byy + Az Bas

T A22'Bll
T All '822

+ A - By
— A2 B
— Ay By — Ay Boy + A2 B

+ Ay By

[a—
H
[S—
[a—

+Ap-Boy .

18

C11 = A11B11 + A12B54
Ci2 = A11B12 + A12B>;

Matrix Multiplication......... &2

*C=hth B, Ay By
+ Ay By + A1 B

Ay - Bya + A1x- By

L C21 = P3 +P4_
Az By 4+ Az By
— Ay By + Az By

A21'Bll
g C22:P5+P1—P3—P7

Ay1-Bii +A11-Bas + A By + A Bas
— A1+ By + A1+ Bys
— Ay By — Ay - By
— A1 Byy — Ay Bia+ Az - By + Az - By

+ Ay - Boy

Az By + Az B1a

19

Matrix Multiplication..........

— Consequently, the Strassen’s method takes

T(n) = 0(1) + O(n?) + 7T (g) +0(n?)

=) +e(m?)

=7T(2

~ By the master method, you can derive that T(n) = @(n'°827)

- Strassen’s method is asymptotically faster than the
strai ghtfo rwar d SQUAREMATRIX'MULTIPLY proce dur (&

20

Questions?

kychen@mail.ntust.edu.tw

21

	Divide-and-Conquer
	Review
	Maximum-subarray Problem.
	Maximum-subarray Problem..
	Maximum-subarray Problem…
	Maximum-subarray Problem….
	Maximum-subarray Problem…..
	Maximum-subarray Problem……
	Maximum-subarray Problem…….
	Maximum-subarray Problem……..
	Matrix Multiplication.
	Matrix Multiplication..
	Matrix Multiplication…
	Matrix Multiplication….
	Matrix Multiplication…..
	Matrix Multiplication……
	Matrix Multiplication…….
	Matrix Multiplication……..
	Matrix Multiplication………
	Matrix Multiplication……….
	Questions?

